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Abstract—Danmu, also called barrage, is a newly emerging
form of online video comment, which scrolls over the screen
and brings better quality of experience (QoE) to users while
watching videos. Therefore, it is widely adopted by various
video platforms. Meanwhile, it is also found that Danmu also
brings additional network energy consumption to clients in Wi-
Fi networks. Although some researchers have proposed the
corresponding energy-saving solutions, they will lead to seri-
ous QoE losses. To this end, we propose a QoE-aware and
energy-efficient scheduling mechanism for real-time Danmu video
streaming, called QESched, taking both energy saving and QoE
guarantee into consideration. Firstly, we design a client-side
barrage scheduling strategy to appropriately delay the barrage
uploading time, so as to optimize energy consumption. Then,
we design a server-side barrage scheduling strategy to decide
when the barrage should be sent, where a deep reinforcement
learning (DRL) model is adopted to deal with the complicated
global status information. Finally, we implement the QESched
system, and conduct experiments with real Danmu user traces.
Experimental results show that our solution achieves a 12.8% to
26.9% reduction in terms of network energy consumption while
reducing QoE loss by up to 92.6% compared to the previous
work.

Index Terms—Danmu, QoE, energy efficiency, deep reinforce-
ment learning (DRL)

I. INTRODUCTION

Danmu, also called barrage, refers to users’ comments that
scroll over the screen in real time while watching a video [1].
Compared with the traditional online video comments which
are independent of the video, barrages can give video users
a sense of real-time interaction, allowing different users to
express their feelings about a certain section of the video, and
all other users can synchronously see the comments at the
current timestamp. The Danmu service first originates from
the Japanese Danmu video-sharing website. Later, other video
platforms, such as Bilibili and YouTube, also launch Danmu
service in their video streaming. In addition to being applied
to these on-demand videos, Danmu is also widely used in
live videos. In recent years, the live broadcast business has
developed rapidly. According to the 2022 Huya.tv annual big
data report [2], the number of monthly active users reached
146 million, and the post-90s accounted for more than 80
percent. Compared with the on-demand video system, live
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broadcasting services pay more attention to the immersion,
immediacy, and interaction of users. Therefore, the Danmu
service has also been deployed by most live broadcast plat-
forms, allowing users to interact with others in real time and
obtain an immersive sense. Other live broadcast platforms,
such as Twitch.tv, provide a live chat window for users to post
their comments and subjective feelings in real time, acting as
barrages.

At present, the mainstream video services mainly use trans-
mission protocols such as dynamic adaptive streaming over
HTTP (DASH), HTTP live streaming (HLS) to transmit videos
in the form of chunks and deploy Danmu or real-time chat. The
real-time nature of Danmu leads to a large number of small and
intensive network transmission tasks, which causes it to greatly
increase the network energy consumption of mobile devices
under the power saving mode (PSM) proposed by 802.11 Wi-
Fi network protocols [3]. In a real-time barrage video service,
we find that barrages cause up to a 43.7% increase in network
energy consumption. Therefore, it is necessary to optimize the
energy consumption caused by the Danmu service.

Prior to our work, there have been several studies that focus
on network energy consumption for smartphones and quality
of experience (QoE) for barrage video. Kravets el. al [4]
proposed an energy-saving algorithm that adjusted the sleep
threshold by the system adaptively. Lim et. al [5] designed
an energy-aware variant to reduce energy consumption with
minimal impact on download latency for multi-path TCP. Yan
et. al [6] and Meng et. al [7] proposed application layer
based network energy consumption optimization methods to
extend the sleep time of network interface card (NIC) by
reasonably delaying the processing of data. As for the barrage,
some studies have pointed out that the barrage can effectively
improve the user’s QoE when watching a video [8], [9]. Ding
et. al [10] took the barrage QoE as one of the basis to optimize
the quality of service (QoS) of live casting. For barrage videos,
user QoE has been widely studied, and some researchers have
begun to study the network energy consumption optimization
method [11].

In terms of previous studies, we find that:
• Few studies on network energy consumption optimization

of smartphones focus on energy-saving algorithms of
real-time barrage video. Most of them are proposed for



traditional transmission protocols, such as TCP and UDP.
These algorithms are not suitable for the scenario of real-
time barrage videos because of the high-frequency and
bi-directional communication between the server and the
clients.

• Jiang et. al [11] first carry out the research on the
optimization of network energy consumption for Danmu
video services. However, in the proposed system, the
scheduling algorithm is relatively simple, and additional
edge servers are needed to conduct the scheduling. It is
difficult to cope with the complex and dynamic barrage
scheduling scenarios which result in severe loss in barrage
QoE.

• For barrage QoE, there is a lack of quantitative barrage
QoE models and the corresponding applications in real
scenarios.

Therefore in this paper, we propose a QoE-aware and
energy-efficient scheduling mechanism for real-time Danmu
video streaming in Wi-Fi networks, called QESched. Our
contributions can be concluded as follows.
• We present an overall framework for QoE-aware and

energy-efficient barrage scheduling that considers both
energy saving and QoE guarantee, called QESched.
Moreover, this framework provides client-side scheduling
function and server-side scheduling function to optimize
the energy consumption of barrage uploading and barrage
receiving, respectively.

• We design a client-side barrage scheduling strategy to
determine the barrage upload time. On the basis of the
prediction of the next chunk request time, the barrage
upload time can be appropriately delayed to be consistent
with the chunk request, so as to achieve the purpose of
energy saving.

• We design a server-side barrage scheduling strategy to
decide whether the barrage should be sent immediately
to clients or wait for the next decision, where a deep
reinforcement learning (DRL) model is adopted to deal
with the complicated global status information including
DASH-related status, barrage transmission status, and
QoE loss, so as to reduce the energy consumption of
barrage receiving at clients. For assessing the QoE loss,
we also propose a quantitative model for QoE loss
consisting of barrage delay, barrage intensity, and display
order.

• We implement the QESched system, and conduct experi-
ments with real Danmu user traces in the Wi-Fi network.
Experimental results show that our solution achieves a
12.8% to 26.9% reduction in terms of network energy
consumption while reducing QoE loss by up to 92.6%
compared to the previous work.

II. BACKGROUND AND RELATED WORK

In this section, we survey the development of DASH video
streaming and DRL technologies, the power-saving mode of
current Wi-Fi protocols, and existing network energy con-
sumption optimization mechanisms.

A. DASH Video Streaming

DASH is a video streaming transport protocol based on
HTTP protocol. The DASH protocol can be used together with
barrage. In DASH video streaming, the video is decomposed
into a series of chunks with short lengths and different bit rates,
and clients request chunks with the appropriate resolution
based on the deployed adaptive bit rate algorithm (ABR). Due
to the wide use of DASH, more and more related research has
emerged, including the research on ABR in pursuit of higher
QoE [12], [13] or energy efficiency [14], and low-latency live
in DASH broadcast [15], [16].

B. Deep Reinforcement Learning

Traditional decision-making algorithms, such as decision
trees, have a static environment in the decision-making pro-
cess, and cannot cope with complex and unstable environ-
ments. To solve this problem, DRL algorithms have emerged.
In recent years, DRL has achieved success in many fields,
such as Go-Explore and robots [17]. Many researchers have
begun to use DRL techniques to solve optimization problems
or decision-making problems. In reference [18], a DRL-
based shared computing clusters resource scheduling method
considering time-varying characteristics was proposed, and
improved metrics for cluster operational excellence remark-
ably. In reference [19], an online computation offloading
algorithm based on deep deterministic policy gradient (DDPG)
in DRL, called EDDPG, was given to solve the problem
of energy consumption minimization. In this paper, we also
employ a DRL model to make decisions for server-side barrage
scheduling, so as to save energy.

C. PSM in Wi-Fi Network

To reduce the NIC energy consumption of the mobile
device, the IEEE 802 standards committee designs the cor-
responding energy consumption management mechanism in
the 802.11 protocol clusters, and introduces the energy-saving
mode PSM.

In general, there are four states of a Wi-Fi NIC:
• Sleep: The NIC turns off the sending and receiving

modules to sleep, so that the energy consumption is
minimized.

• Rx Idle: The NIC listens to the Wi-Fi channel but does
not actually receive data.

• Rx: The NIC listens to the data frame and receives it.
• Tx: The NIC sends a data frame.
Among the above four states, only Rx and Tx states are

truly active, and the energy consumption of this part is also the
highest. On the contrary, the sleep state has the lowest energy
consumption. However, in practice, in order to avoid additional
overhead caused by trivial switching states and ensure that
there is no conflict between receiving and sending, the NIC
needs to stay in Rx Idle state for a certain time interval
called idle threshold ti whose energy consumption is much
higher than sleep mode. Only if the time interval between two
network transmissions is greater than the threshold ti, can the
NIC switch to sleep state. So if we can reduce the total time



NIC stays in idle state, the network energy consumption can
be effectively reduced [20].

D. Network Energy Consumption Optimization

At present, there have been multiple researches on network
energy consumption optimization of smartphones. Here we
present a few of the main relevant researches. Meng et.al [7]
proposed a mechanism to apply a dynamic data sending and
receiving policy on the client side. The authors mentioned the
use of a cached data domain to extend the time when the cell
phone network card is in sleep mode by delaying the process-
ing of relevant data. For another, Jiang et. al [11] first studied
the impact of Danmu on Wi-Fi network energy consumption,
and proposed a heuristic QoS-aware optimization algorithm
based on the transport layer. In the proposed system, an edge
proxy and client proxies were deployed to monitor the DASH-
related transmission. And barrages were delayed within the
allowed time to achieve synchronous transmission with other
DASH-related packets, so as to prolong the NIC sleep time.

III. PROBLEM STATEMENT AND FORMULATION

In this section, we analyze the network energy consumption
by Danmu and the impacts of the barrage scheduling on
QoE. For another, we propose relevant formulas to ensure the
reliability of the scheduling algorithm proposed in section IV.

A. Network Energy Consumption by Danmu

The Wi-Fi NIC’s energy consumption of mobile devices can
be expressed by the following formula when PSM is enabled:

W = Pa × Ta + Pi × Ti + Ps × Ts (1)

where Pa, Pi, and Ps respectively represent the power of the
Wi-Fi NIC in active, idle, and sleeping states; Ta, Ti, and
Ts respectively represent the time that NIC stays in the three
states.

We consider the ideal network environment with no packet
loss, constant bandwidth, and constant round trip time (RTT).
When the same video is played each time, the DASH-related
network transmission time is the same, that is, Ta is constant,
and the sum of Ta, Ti, Ts is equal to the video length T . Thus,
the formula can be simplified as follows:

W = (Ps − Pi)× Ts +W ′

W ′ = (T − Ta)× Pi + Pa × Ta
(2)

Since Ps < Pi, the NIC energy consumption is monotoni-
cally decreasing with respect to the length of sleep time [11].
The use of interactive Danmu service will lead to the non-
synchronous transmission of a large number of barrage-related
packets, which makes the network module switches between
active and idle states frequently, and significantly shortens
the sleeping time as well, thus increasing the network energy
consumption. As to a real-time barrage video system, each
barrage is generated by the client and uploaded to the server,
and then sent by the server to other clients watching at the
same time. Therefore, for any mobile device, the additional
network energy consumption caused by Danmu consists of two

parts: uploading the barrages generated by the local clients
to the server, and receiving the barrages generated by other
clients from the server. In the remainder of this paper, we use
client barrage, and server barrage to refer to each of these two
types of barrages.
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(b) Network energy consumption with scheduling

Fig. 1: Network energy consumption of client by Danmu
without/with barrage scheduling

In Fig. 1, it can be easily found that there are two basic
barrage scheduling ideas that can be used to increase the sleep
time of the NIC, i.e., synchronously transmitting barrages and
DASH-related packets (e.g., chunk request & client barrage
in Fig. 1b), and synchronously transmitting multiple barrages
(e.g., aggregated server barrages in Fig. 1b).

Therefore, we design a barrage scheduling algorithm with
dynamic parameter adjustment on the client and a DRL-
based barrage scheduling algorithm that allows synchronous
transmission between barrages in the server. We specially add
QoE loss as one of the decision factors, so as to reduce
energy consumption as much as possible under the premise
of minimizing QoE loss.

B. QoE Measurement

Barrage can be regarded as a special form of online video
comment, where users can communicate and comment in real
time while watching videos. An increasing number of studies
have pointed out that barrages can improve the users’ QoE
while watching videos [8], [9], [21]. Barrage is different from
ordinary online video comments in the following aspects:
• Different emphasis on content: The language used in

barrages often has the characteristics of conciseness and
humor, and it’s more about the emotional expression of
the audience in a fleeting time [22].

• Special display form: the barrage is usually displayed at
the top of the video, entering from the right side of the
screen and exiting from the left side. As a result, it will
cover the video content, which is just the reason why
some people don’t like the Danmu video.

• High real-time property: the content of barrages is highly
coupled with video content [23], and there is a high
intensity of real-time communication between users.

• High interactivity: the Danmu users send barrages to
spread their views and emotions, and communicate with



other Danmu users to obtain information, entertainment,
and companionship.

In an ideal environment, playing the same video and the
same Danmu each time will bring the same amount of QoE
improvement. However, applying the energy-saving schedul-
ing of barrages will lead to QoE loss on the basis of this
benchmark improvement. We hope to minimize the reduction
of this part of QoE. Based on these conclusions, combined
with the actual experience, we put forward the quantitative
formula of the barrage QoE loss from the following aspects.

Barrage delay: video content almost completely determines
the feelings of Danmu users. Therefore, barrages and video
content are highly correlated and synchronized in real time
[24]. Therefore, the timelines of barrages should match with
the timelines of the corresponding videos. Meanwhile, those
who watch the video at the same time are more willing to
see the barrages display synchronized with the video progress,
so as to gain higher QoE. The long-time delay can lead to
untimely interactions and get barrages out of sync with the
content of the video and reduces QoE to a certain extent.

(a) Without scheduling (b) With scheduling

Fig. 2: Impact on video content display (without/with barrage
scheduling)

Barrage intensity: some previous studies show that many
users are sensitive to the intensity of barrage [10], because
dense barrages will cover the video and decline the viewing
experience. Moreover, the increase in barrage intensity will
make it more difficult for users to read barrages completely,
which will bring a bad interactive experience. And our energy-
saving system will make multiple barrages aligned and appear
on users’ screens simultaneously. The comparison between
before and after the barrage scheduling is shown in Fig. 2,
and it can be easily told that with the scheduling, the barrages
are displayed intensively, which covers the video content and
increases the reading difficulty.

In practical use, we conclude that the QoE loss of this part
can be calculated separately at each time when there are n
barrages displayed simultaneously, and finally summed up. At
the same time, the impact brought by the change of barrage
frequency has an obvious diminishing marginal effect, so we
use the integral of the standard normal distribution function to
calculate the reduction of QoE. As a consequence, this part of
QoE loss can be calculated as:

f(n) =

∫ n−1

0

1√
2π
e−

z2

2 dz (3)

Display order of barrages: It is mentioned that Danmu ser-
vice has high interactivity. Spreading simple ideas, emotions

and providing quick and convenient interaction between users
is one of the important functions of the screen. Therefore,
the display order of barrages on different clients should be
strictly matched according to their generation time, otherwise,
QoE will also be reduced.

The QoE loss formula is shown as below:

QoEl = γ × delay + λ×
∑

fi(n) + µ×M (4)

where delay denotes the barrage delay, M denotes the incor-
rect number of barrage display order. Finally, these three parts
are added by different weight. By default, we set γ, λ, and µ
to 1, and it is also the ratio we use in the QoE evaluation in
section V.

IV. QESCHED SYSTEM

In this section, we first present the overview of our proposed
system called QESched, and then propose the client-side bar-
rage scheduling algorithm and server-side barrage scheduling
algorithm to optimize the energy consumption of barrage
uploading and barrage receiving, respectively.

A. System Overview

As shown in Fig. 3, the QESched system consists of two
parts: the client-side barrage scheduling and the server-side
barrage scheduling, respectively corresponding to optimizing
the additional network energy consumption generated by up-
loading and receiving barrages.

As for clients, we propose a heuristic barrage scheduling
algorithm, which can adaptively adjust parameters. In the
scheduling process, we delay some of the barrages and monitor
the transmission of DASH-related packets and barrages in
order to synchronize the transmission of client barrages with
chunk requests, DASH chunks, and server barrages.

The server-side barrage scheduling solution contains the
processes of perception, decision and execution.

• Perception layer: once the user starts to use the proposed
scheduling system, the server will delay the newly up-
loaded barrage and wait for the scheduling result. The
system starts to update the user’s network transmission
information and QoE preference in real time to generate
the latest user status information.

• Decision layer: The decision layer is composed of a DRL
agent. The agent obtains the user’s status information
from the perception layer and extracts the input of the
neural network (NN) model. The NN model outputs the
probabilities of taking each action. Finally, the agent
selects an action randomly according to the probabilities
as the decision result.

• Execution layer: The execution layer has two main tasks.
Firstly, implement DASH live video service, which can
be simply described as sending the corresponding DASH
chunks to clients according to chunk requests. Secondly,
send the delayed barrages or continue to delay the trans-
mission of these barrages according to the decision result.
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Fig. 3: Framework of QESched

B. Client-side Scheduling

For the client-side barrage scheduling, we hope to reduce
network energy consumption by delaying the barrages to
synchronize with other video transmission tasks. However, too
long delay not only cannot further optimize energy consump-
tion, but also brings severe QoE loss. Therefore, we add some
limits to avoid excessive delay. First, at the start of the video
streaming, according to the user’s preference, the client sets
the maximum allowed delay time D for the transmission of
a barrage, which means when the barrages must be sent to
the server once the delay reaches D. After that, when a new
barrage is generated, the buffer of the DASH client is used
to predict the request time of the next chunk based on the
client’s chunk request logic. In the DASH open source fore-
end, polling is done every 0.5 seconds, and the next chunk will
be requested if the buffer is less than a value set in advance.
The following formula represents how to predict request time.

t =

{
b(buf − bufl)/0.5c × 0.5, buf ≥ bufl
0, buf < bufl

(5)

where buf denotes the current buffer of DASH player, and
bufl denotes the lowest buffer needed to keep. Finally, the
client-side barrage scheduling is executed. There are four
sending types of barrages.

• Type 1: If t > c ×D, we send the barrage immediately
to avoid unnecessary delay.

• Type 2: If there is another video transmission at the
current time, we send the barrage directly.

• Type 3: If t < c ×D, we delay the barrage and send it
once the delay reaches D.

• Type 4: If t < c ×D, we delay the barrage and send it
once a new chunk is requested.

Here c is a constant calculated in advance. This algorithm
is used to ensure that the barrage could be sent at the same
time as the chunk request after being delayed, reducing the
possibility of delay reaching D and guaranteeing that there
is no obvious loss in the barrage QoE while minimizing the
energy consumption. Algorithm 1 shows the pseudocode for
client-side scheduling.

We generate the barrages on the client according to the

Algorithm 1: Client-side barrage scheduling
c = 0.8 // Initialization of parameter c
index = [] // List of delayed barrages
barrages = [] // List of barrages generated at client
n = 0 // Initialization of Number of barrages
// Called whenever a new barrage bn is generated
Function Schedule(bn):

barrages.add(bn)
n++
predict the time t of next chunk request
if t < c×D or DASH packets are transmitting

then
send bn
adjust the value of c

end
else

index.add(bn)
end

end
// Called whenever the delay of barrage bi reaches D
Function OnMaxDelay(i):

send bi
index.delete(bi)
adjust the value of c

end
// Called whenever a new chunk is requested
Function OnChunkRequest:

for j in range(index.size) do
send index[j]
adjust the value of c

end
index = []

end

prepared Danmu traces and the numbers of barrages of the four
sending types are denoted by n1, n2, n3, and n4 respectively.
First, we fixed c for a preliminary experiment. According to
the results of the preliminary experiment, it works best when
c ranges from 0.4 to 1, and as c increases, n3 and n4 also
increase. And our goal is to increase the amount of n4 while
minimizing n3. The following formula represents how to self-
adaptive adjust c.



f(c, type) =


c, type = 1

max(0.4, c− n2 ∗D/(N ∗ Tc)), type = 2

max(0.4, c− n3 ∗D/(N ∗ Tc)), type = 3

min(1, c+ n4 ∗D/(N ∗ Tc)), type = 4
(6)

where Tc is the length of chunks, and N is the number of
barrages sent.

TABLE I: Ratio of four barrage’s sending types

c Type 1 Type 2 Type 3 Type 4

1 23.42% 42.30% 19.61% 14.67%
0.6 23.35% 51.55% 10.86% 14.24%
0.2 23.51% 63.46% 2.40% 10.63%

f(c,type) 23.34% 56.06% 6.37% 14.23%

We conducted 12 experiments for different values of c,
and Table I shows the average experimental results. In the
table, it could be calculated that the proportion of sending
type 4 increases by 3.60% compared to the method that c
equals 0.2, and the number of sending type 3 decreases by
13.24% in the condition that the proportion of sending type
4 is nearly identical compared to the method that c equals 1.
This algorithm works effectively.

C. Server-side Scheduling
In this section, we propose a server-side barrage scheduling

algorithm that involves the design and training method of the
DRL model.

1) Global Status Information Acquisition: In the perception
layer, the main task is to record the user status information,
and provide input for the decision layer. For users who enable
energy-saving barrage scheduling, we will firstly initialize
users’ experience preferences, in order to select DRL mod-
els trained with different parameters, which make different
decisions on barrage scheduling according to personalized
preferences. Secondly, Danmu server will maintain a barrage
list, which stores some properties including generation time on
clients and the waiting time caused by client-side scheduling
of all the barrages that have been received from other clients
but not sent to the user. Every time server receives a barrage,
it is added to the list. Finally, we will update the latest DASH-
related transmission and barrage transmission time of different
clients in real-time.

2) Markov Decision Process Formulation: In the following,
we present the design of Markov decision process.
• State: State outlines the values obtained by the agent

from the perception layer and becomes the input of
the DRL model. In the case of energy-saving barrage
scheduling, we define the State as:

State = (L,K, Tn, Tr, Tb, Td)

L = {l1, l2, ..., lk}
(7)

where L represents an array composed of the generation
time li of each delayed barrage, K represents the number

of delayed barrages, Tn represents the present time, Tr
represents the time of the client’s latest chunk request, Tb
represents the time of the client’s latest barrage transmis-
sion, and Td represents the sum of the delayed barrages’
waiting time caused by client-side barrage scheduling.
Due to the large change in the time scale of the train-
ing process, we need to standardize the time-related
data. However, ordinary normalization will lead to the
wrong estimation of energy consumption and QoE in the
real-world environment, resulting in incorrect scheduling
decisions. To address this problem, we standardize by
converting time to relative time, that is, subtracting all
the time values in the State from the minimum value in
L. Therefore, the final form of State can be described
as:

lmin = min(l1, l2, l3, ..., lk) (8)

State = ({l1 − lmin, l2 − lmin, ..., lk − lmin},K,
Tn − lmin, Tr − lmin, Tb − lmin, Td − lmin)

(9)

• Action: For each step, there are two possible actions:
send the barrages in the waiting list together and clear the
list or keep these barrages and wait for the next decision.
Thus, the action of the DRL algorithm is defined as
(0, 1), where 0 means to retain the delayed barrages, 1
means to send all the barrages in the list.

• Reward: The reward function is cleverly designed to
guide the agent to acquire the optimal policy. We hope to
reduce network energy consumption as much as possible
while pursuing less QoE loss, so reward should be com-
posed of two parts: network energy consumption function
and QoE function QoEl. It is difficult to calculate energy
consumption directly, but as we mentioned in section
III, energy consumption is a monotonically decreasing
function of NIC sleep time Ts, so we use the sleep time
of the NIC to replace the energy consumption function.
So the reward for each action is shown as followed:

reward = α× Ts + β ×QoEl (10)

However, in practical training, we find that if reward is
calculated in this way for every step, the reward value
will be very close no matter whether the action is 0 or
1, resulting in poor algorithm performance. Therefore,
we adapt the idea of reward shaping [25] in dealing
with sparse rewards. Only when the value of action is
1, the reward is calculated according to this formula.
Otherwise, the reward is a default number Rd which
is close to 0, such as ±0.01. So we reshape the reward
function as:

reward =

{
α× Ts + β ×QoEl, action = 1

Rd, action = 0
(11)

3) DRL Model: In the proposed MDP model, the generation
time array of the delayed barrage L in the State has different
dimensions from other properties, so we cannot extract the
status information by simply using a full connection layer.
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In order this end, we first fill 0 in the tail of L to a fixed
length, and pass it to a 1D convolution layer [12] with 64
filters each of size 4 with stride 1. The remaining properties
are collectively used as inputs to another fully connected layer.
Then the outputs of these two layers are aggregated as inputs
to the next fully connected layer. Finally, the probability of
actions is the output applying the softmax function. The critic
network uses the same NN structure, but its final output is a
linear neuron. Fig. 4 pictures the NN model in detail.

4) Model Training: Ideally, we will train the DRL model
in the realistic network using the built real-time Danmu video
system introduced in section V. However, DRL training needs
a large number of datasets, and it results in a significant time
cost for training in a realistic environment. Therefore, we
build a simulation environment to imitate the process from
receiving barrages from one client to uploading the barrages
to other clients. We watch the video for some time in a realistic
environment, and record the time when the client requests
DASH chunks. Then we select 100 Danmu traces from the
Danmu API provided by Bilibili [26], and regard the time
property of barrages provided as the time that the barrage
is generated at the client. Finally, we randomly generate the
client-side waiting time for each barrage according to the
probability given by section IV-B, that is, 79.40% of the
barrages has no delay in clients, 14.23% of the barrages’
waiting time is a random number range from 0 to D, and
the rest of barrages’ waiting time equals to D.

We initialize the simulation environment using the data
prepared in advance, and train our NN model with PPO-CLIP
algorithm. We also adapt some useful tricks including adding
the action probability entropy to the loss function, learning rate
decay and using tanh activation function in particular layers
[27] to improve the performance of the algorithm. Algorithm 2
describes the training method of the DRL model. In Algorithm
2, the agent extracts status information and makes decisions,
the experience memory and reward list store observation
data and reward value for each step respectively.

5) Server-side Barrage Scheduling: Whenever the percep-
tion layer detects a new barrage or a new chunk request
arriving, the algorithm will make a scheduling decision. If it’s
a new barrage, add the newly received barrage to the delayed-
barrage list and wait for the scheduling decision. Otherwise,
update the DASH-related transmission status information. The

Algorithm 2: Server-side Model Training
begin
initialize environment, agent, experience memory,

and reward list
initialize n episodes and target value
// Sn and rn denote the state and reward of each step
for i in range(n episodes) do

reset environment
R = 0 // total reward per episode
n = 0
while not done do

action = agent.get action(Sn)
execute action in environment
get rn, Sn+1

R = R + rn
experience memory.append((Sn, action, rn,
Sn+1))

if experience memory is full then
agent.learn(experience memory)
experience memory.clear()

end
reward list.append(R)
if i % 20 == 0 and
average(reward list) ≥ target value then

break
end
n = n + 1

end
end
close environment

agent extracts the input for the DRL model based on the
status information provided by the perception layer, outputs the
probability value of two actions, and selects actions according
to the probabilities. If action=1, the execution layer sends the
delayed barrages to the client synchronously, and clears the
list of delayed barrages. If action=0, no barrages will be sent,
they will wait for the next scheduling. This operation ensures
that the staggered transmission of the server barrages on
the original time scale becomes synchronous, which reduces
network energy consumption. Algorithm 3 shows the server-
side scheduling process in detail.

V. EVALUATION

In this section, we implement the QESched system, and
conduct real-world experiments to evaluate the performance
of our system.

A. Experimental Setup

1) Real-time Barrage Video Service: We use the open-
source fore-end provided by dash.js to build video websites.
The backend based on Flask is deployed on the remote server,
and the WebSocket protocol is used to realize the real-time
interactive barrage service. We select the appropriate barrage
frequency according to the barrage data published by Huya.tv,
and download six real Danmu traces from Bilibili according
to the set frequency as test data, that is, three for client



Algorithm 3: Server-side barrage scheduling
barrage list consists of delayed barrages
begin
initialize agent
//Called whenever server just receives client’s barrage
Function OnBarrageArriving():

barrage list.append(barrage)
get latest information of DASH request
extract State
action = agent.get action(State)
if action == 1 then

send delayed barrages
barrage list.clear()

end
end
//Called whenever server just receives chunk request
Function OnRequestArriving():

get barrage list
update DASH transmission status information
extract State
action = agent.get action(State)
if action == 1 then

send delayed barrages
barrage list.clear()

end
end

barrage frequency comparison: Low (average of 0.2 client
barrages/second and 5.6 server barrages/second), Mid (0.5 and
5.6), and High (1.0 and 5.6); three for server barrage frequency
comparison: Low (0.5 and 3.6), Mid (0.5 and 5.6), and High
(0.5 and 7.5). We select Mid frequency and 8 second chunk
length as default settings.

2) Energy Measurement: We use two smartphones to visit
our own video website at the same time and measure the en-
ergy consumption of one of the phones. We randomly split the
downloaded Danmu traces into two according to the frequency
of the client barrages and the server barrages. The test phone
generates barrages and uploads them according to the client
Danmu traces. The other generates barrages according to the
server Danmu traces, which will be relayed to the test phone
by the server. The network energy consumption is obtained by
the difference between the total energy consumption of watch-
ing barrage videos and the energy consumption of watching
local videos with the Wi-Fi module off. We use Redmi Note
4X as the test phone and Monsoon power monitor AAA10F
[28] to measure energy consumption.

3) Evaluated Method: In the QESched system, we pro-
vide three stable DRL decision models, called QESched-
A, QESched-B, and QESched-C, which respectively sat-
isfy different user preferences, and the corresponding hyper-
parameter settings are shown in Table II. Specifically,
QESched-A is the model adopted as default setting, QESched-
B is the enhanced energy-saving version, and QESched-C is
a version of sacrificing certain energy-saving effects to obtain
less QoE loss. We measure the network energy consumption

of the solution without barrage scheduling as the benchmark
called Original. Meanwhile, we implement the existing barrage
scheduling algorithm called QoS-aware [11] as the comparison
scheme. We set the QoS-aware algorithm with the maximum
allowed delay D = 2, due to the setting can best juggle energy
consumption and barrage QoE.

TABLE II: Hyper-parameter setting of different models

Model Name Rd α β γ λ µ

QESched-A -0.01 1 1
240 1 1 1

QESched-B 0.01 1.5 1
240 1 1 1

QESched-C -0.01 1 1
180 1.5 1 1

B. Experimental Results

1) Impacts of Maximum Allowed Delay Time D: In this
part of the experiments, we set the maximum allowed delay
time D to 1 second, 2 seconds, and 3 seconds respectively.
Meanwhile, the barrage frequency and the chunk length are
set to default values.

The results are shown in Fig. 5. In this figure, we can see
that the parameter D has a significant improvement in the
effect of energy consumption optimization. When D reaches
3 seconds, QESched can reduce network energy consumption
by up to 25.7%. In addition, in the QESched-A and QESched-
B systems, the performance on energy saving is better than the
QoS-aware algorithm. Moreover, the energy-saving effect of
the low-latency model QESched-C is also greater than that
of the QoS-aware algorithm when D is set to 3 seconds. In
terms of barrage QoE, our models show excellent performance.
All three models we provided are substantially better than the
comparison group, with up to 92.6% reduction in barrage QoE
loss. Even in the case of using the QESched-B and with D is
set to 3 seconds which sacrifices the most QoE to achieve a
higher energy reduction, it still shows a 51.9% improvement
than the QoS-aware algorithm. In the subsequent experiments,
we choose 2 seconds as the default maximum allowed delay
time.

2) Impacts of Barrage Frequency: In this part of the
experiments, we set client/server barrage frequency to Low,
Mid and High, respectively. Meanwhile, other parameters are
set to default values.

The results are shown in Fig. 6. Among the three methods
we offer, the network energy consumption is reduced by 12.8%
to 26.9%. And both of them reduce significantly more energy
as barrage frequency increases. It also reduces QoE loss by
58.1% to 84.2% on the premise of achieving no less than
or even better energy savings compared to the comparison
group. It is noteworthy that when the frequency of client
barrages decreases our energy-saving effect is better as shown
in the comparison of each density in Fig. 6a. Also, when
the frequency of server barrages increases our energy-saving
effect is better as shown in Fig. 6c. To sum up, the greater the
difference between the frequency of client barrages and server
barrages, the better the effect of our energy optimization,
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Fig. 5: Impacts of parameter D on network energy consumption and QoE loss
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Fig. 6: Impacts of barrage frequency on network energy consumption and QoE loss

���
 ���� ����
� +%"���%�* ��)��&%��

����

�����

�����

�
���

�����

�����

�
�*
,
&(
"�
�%

�(
�-

��
&%

)+
$
'*
!&
%�
�+
�
 �

��
�
� ����	� ������������ ����
� ��	���
������ ����
�

��
���

��
�
� ������

������

�(!�!%�#
���� ����
���� ����
���� ����
�&���,�(�

(a)

���	 ���� ���

��$�������#���"�� ���

���

��



��

��


����

���


�
��

���


�
 �

��
 "
"

���� ���� ���

	���
	��	 	��


����
���
 ����

	���

��
�

���
�

���������
���������
���������
� ���%�!�

(b)

Fig. 7: Impacts of chunk length on network energy consumption and QoE loss

which is very much in line with the actual application scenario
where the barrage frequency of the server-side is much greater
than that of the client-side.

3) Impacts of Chunk Length: In this part of the experi-
ments, we set Chunk Length to 4 seconds, 6 seconds and 8
seconds, respectively. Meanwhile, other parameters are set to
default values.



The results are shown in Fig. 7. Our proposed QESched
performs better with longer chunk length. With chunk length
of 8s, we achieve a 17.9% to 23.2% reduction in network
energy consumption, and a 65.6% to 83.7% reduction in
QoE loss. With chunk length of 6s, we achieve a 19.7% to
21.4% reduction in network energy consumption, and a 37.8%
to 67.0% reduction in QoE loss. With chunk length of 4s,
we achieve a 16.8% to 17.7% reduction in network energy
consumption, and a 32.3% to 39.7% reduction in QoE loss.
Only in the QESched-B system with Tc=4, our method suffers
slightly more QoE loss than the QoS-aware algorithm.

VI. CONCLUSION

In this paper, we investigate the barrage scheduling problem
for real-time Danmu video streaming in Wi-Fi networks,
which aims to optimize client’s network energy consumption
while guaranteeing user’s QoE. Firstly, we define a quantitative
model for QoE loss. On this basis, we propose a QoE-aware
and energy-efficient scheduling mechanism called QESched
that combines a client-side scheduling algorithm and a server-
side DRL-based scheduling algorithm to reduce energy con-
sumption of both barrages uploading and barrages receiving on
the client. Finally, we implement the corresponding system and
conduct real-world experiments. The results indicate that our
system can reduce network energy consumption by 16.8% to
26.9%. Moreover, our work avoids up to 92.6% loss in barrage
QoE while achieving similar or even better energy savings.
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